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Symmetry rules are derived for relating the convergent-beam electron-diffraction pattern symmetries to 
the three-dimensional symmetry of the structure. These rules are applied to a study of 2M biotite. As a 
result the space group is determined as C2, or number 5 in International Tables for X-ray Crystallog- 
raphy, whereas it was previously held, in the absence of accurate data, to belong to C2/c or number 15. 
In addition, a method is described for uniquely determining the centrosymmetry of a crystal indepen- 
dently of space group, hence resolving the ambiguity between a centre of symmetry and a twofold axis 
present when approximations to dynamic electron scattering are used which take into accoufit only the 
symmetry of the projection. 

PART 1 

Introduction 

We are concerned in part 1 to give the symmetry 
relationship expected within the convergent-beam elec- 
tron-diffraction pattern from a parallel-sided crystal, 
together with referenced derivations, and in part 2 to 
test these relationships and to demonstrate a practical 
approach to space-group analysis by means of a study of 
biotite. 

As an introduction we mention the two most obvious 
aspects of symmetry in electron diffraction which lead 
to readily observable phenomena and which suitably 
illustrate the difference between X-ray and electron 
diffraction data in this respect: 

(a) The break-down of Friedel's law 
This has been stated in various ways (e. g. Miyake 

& Uyeda, 1955; Goodman & Lehmpfuhl, 1968; Ta- 
naka & Lehmpfuhl, 1972), in reference to scattering 
from a non-centrosymmetric structure. However, in 
spite of this work there does not appear to be any 
hitherto published criterion for distinguishing centro- 
and non-centrosymmetric crystals in three dimensions; 
in this regard experimental technique has been ahead 
of tabulation. 

(b) Crystal boundaries 
The symmetries of the boundaries will naturally in- 

fluence the symmetry of the pattern. This is because in 
dynamical scattering it is the symmetry of the crystal, 
and not that of the unit cell, which is operative, and 
the unit-cell symmetry which is of interest to the struc- 
ture analyst can be derived from the pattern when the 
influence of the boundaries is taken into account. For 
a plane-parallel plate crystal this influence may be of 
three types: 

(i) Termination of the structure after a non-integral 
number of unit cells (e. g. Lynch, 1971; Goodman & 
Moodie, 1974). 

(ii) Termination of the structure after an integral 

number of unit cells, but with boundaries occurring so 
as to give a symmetry lower than the infinite structure 
(example: MOO3). 

(iii) Asymmetry arising from inclination of the in- 
cident beam to the surface normal (Goodman, 1974). 

These two phenomena provided the initial suggestion 
that a practical and unequivocal method of space-group 
analysis could be established. A full theoretical approach 
to the symmetry problem would involve group theory 
(see Tinnapple, 1975). However, at a less ambitious 
level we have approached the problem through indivi- 
dual space-group elements, and our theoretical refer- 
ence is to Moodie (1972). Work on similar lines, but 
with a different theoretical and experimental back- 
ground, is being pursued by J. Steeds and colleagues 
(e. g. Steeds, Tatlock & Hampson, 1973). (It is also 
assumed in this discussion that we are dealing with a 
crystal free from faults, apart from the non-integral 
termination mentioned, although the practical pro- 
blem of dealing with faults and curvature is mentioned 
in part 2. The soluble problem of crystals with hori- 
zontal stacking faults is discussed elsewhere and is out- 
side the scope of this publication.) 

Use of the projection approximation 

In an earlier investigation (Goodman & Lehmpfuhl, 
1968) we were content to show that a structure which 
was polar in projection displayed an asymmetry in the 
relationships of the hkO diffracted intensities, and to 
show that the 000 pattern retained a centre of symme- 
try as predicted by the reciprocity theorem in the 
projection or zero-layer-interaction approximation. 
The projection approximation is that approximation 
which includes interactions only of, say, the hkO reflex- 
ions of an [001] zone pattern, and is equivalent to 
considering the scattering from a crystal potential 
which has been averaged over one of its dimensions. 
It can therefore incorporate only the symmetries of the 
two-dimensional projection group and its accuracy is 
limited by the magnitude of interaction present in- 
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volving hkl (l-¢0) reflexions and by tilted boundary 
effects. The projection approximation seems reason- 
able when the c axis is short (say < 10 A) for high- 
voltage electrons, and it allows a very convenient inter- 
pretation. However, a difficulty arises in that there is 
experimentally no very clear point, in general, at which 
it can be said to hold to a given accuracy. This diffi- 
culty would be met in attempting structure analysis 
solely from the electron diffraction data. In this case 
it is unlikely that sufficient structural information 
would be available to allow a quantitative examination 
of the effects of symmetry. It therefore seems wiser to 
follow the procedures for three-dimensional analysis 
initially, and to deduce the two-dimensional symmetry 
of a projection as a second step. The three-dimensional 
symmetry rules differ from those of the projection 
approximation in that we no longer have a one-to-one 
correspondence apparent between crystal and pattern 
symmetries, but in spite of this they are no more dif- 
ficult to apply. 

Special points and trajectories 

This section is included particularly for the benefit of 
those unfamiliar with convergent-beam work who 
might otherwise find the significance of certain lines 
and points of the pattern obscure, including the defin- 
ition of a zone. We use 'Kossel pattern' for convenience, 
rather than the unwieldy name 'wide-angle convergent- 
beam pattern' to describe the pattern produced by a 
large incident convergent beam which allows the dif- 
fracted orders to overlap, since the geometry is similar 
to Kossel pattern geometry. A small defocus (placing 
the cross-over above or below the crystal) produces 
sufficient contrast to determine the orientation and 
approximate symmetry of the crystal planes. A series 
of such patterns taken with different crystal orienta- 
tions allows relatively large sections of the Kossel 
pattern to be mapped as part of the surface of a sphere, 
whose radius equals the camera length. Alternatively, 
using an aperture somewhere between the source and 
the main lens, to restrict the angle of the incident cone 
of radiation, one can prevent overlapping of diffrac- 
tion orders, and map out sections of intensity distri- 
bution (from a spherical surface) contributed to by one 
order, i. e. the Kossel-M611enstedt pattern. Manipula- 
tion of a Kossel-M611enstedt aperture allows particular 
points in an n-beam interaction pattern to be located 
within a certain angular range without mechanical 
adjustment of the crystal. The idealized Kossel lines 
represent the trajectories of zero excitation error, and 
occur experimentally roughly at the centre of the line 
contrast. In scattering from the {hkl} set of planes, _ - -  

b o t h  hkl and hkl reflexions are excited, leading to the 
appearance of a pair of parallel Kossel lines forming 
a 'Kossel band'. For symmetry study we need to find a 
zone. As a working definition, a zone occurs whenever 
a reasonably strong pair of Kossel lines is crossed by 
at least one other pair (and will usually entail at least 

two, or three, other pairs). In this case, the intersection 
of the central lines of the crossing Kossel bands is 
unique, and called here the centre o f  the zone. 

In the apertured Kossel-M611enstedt pattern, each 
hkl diffraction order has a central line (the trace of ~-- 
0), and at a zone setting it has a central point given by 
the perpendicular intersection of this (Kossel) line with 
a second line drawn from the centre of the zone paral- 
lel to the hkl scattering vector. The central line and 
point are special in the symmetry of the intensity dis- 
tribution, as a consequence of the reciprocity theorem; 
the second intersecting line will be a special symmetry 
line if it is parallel to a suitable crystal axis. For the 
000 distribution there is a set of special lines, corres- 
ponding to the set of intersecting central lines of the 
Kossel bands, and its centre point is the centre of the 
zone. These definitions are necessary so that we can 
describe the experimental analysis without ambiguity. 

Symmetries introduced by reciprocity 

Diffraction symmetries can be conveniently considered 
in two groups" those determined directly, by the in- 
variance of the crystal and the zone under considera- 
tion under a set of space-group operations, and those 
introduced by reciprocity. Since the latter symmetries 
are the less obvious and cause the most trouble in 
communicating results, they are described in more de- 
tail. 

The reciprocity theorem has been described in terms 
of the Ewald construction by Moodie (1972). In this 
construction only the two beams of interest (in an n- 
beam situation) are shown, namely the incident and 
one scattered beam. The reciprocal diagram is obtained 
by refecting the original diagram across the scattering 
vector, and according to the theorem represents an 
equivalent scattering path. If we regard the two beams 
of each diagram as input and output beams, reciprocity 
involves sending an input beam back along the original 
output path so that it strikes the reverse side of the 
crystal. Direct access to this configuration experiment- 
ally therefore involves rotating the crystal through 
180 ° . Furthermore, the equivalence of this reciprocal 
configuration to the original or incident configuration 
is independent of any symmetry and holds for P 1. For 
these reasons the first symmetry group to give acces- 
sible and useful pattern symmetry (i.e. accessible to 
practical convergent-beam diffraction) is P1. 

Translational symmetries 

The convergent-beam (or Kossel-M611enstedt) pattern 
consists of a set of hkl non-overlapping discs of inten- 
sity (for a diagram illustrating the formation of the 
pattern, see, Goodman, 1971). Each disc contains a 
two-dimensional rocking curve of the crystal, in which 
incident angular coordinates are transformed into x - y  
coordinates. These discs are disposed relatively on the 
observation plane with the geometry of the diffraction 
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pattern. In describing the pattern symmetry as a whole, 
we have to consider s imultaneously the geometry 
within the discs and the geometry of  their relative 
distribution. Since the 000 disc and also its centre are 
unique (i.e. the pattern has an origin) it might be 
supposed that we only need to consider the point- 
group, or multiplicative, symmetries of  the pattern. 
This is certainly true for the pattern as a whole. How- 
ever, it is also useful to consider the symmetries within 
the hkl order, and this includes geometrical relation- 
ships between hkl and h~i discs of  the pattern. The 
most important  example of  this arises in the case of an 
isolated centre of  symmetry.  

(i) Centre of  symmetry 
Derivat ion of the pattern symmetry for a crystal with 

a centre of symmetry is given in Fig. 1. This demon- 
strates the translat ional  relationship between hkl and 
h~! distributions. The translat ion distance is the length 
of the displacement rhkt between the Kossel-line pair. 
This is the only symmetry in the pattern from a crystal 
of  P ]  symmetry,  or from a sufficiently arbitrary setting 
of any centrosymmetric crystal. No symmetry is in- 
troduced into the 000 distribution. 

(ii) Central horizontal rotation diads, twofold screw 
axes, glide planes, and mirror planes 

Central  here means mid-way between the entrance 
and exit faces of the crystal along the zone-axis direc- 
tion, which means in a regular structure (dependent 
of  course on the positions of the boundaries) at z=X2 
in the unit  cell for the [001] setting; horizontal means 
parallel to the plane of the diffraction pattern. A cen- 
tral horizontal  rotation diad or twofold screw axis 
produces a mirror  along any central line of an hkl 
distr ibution to which it is perpendicular.  The construc- 
tion for this proof  is already given in another  publica- 
tion (Goodman,  1974). A central mirror  or glide plane 
produces a centre of symmetry at the centre point  of  
each hkl distribution. The construction for this proof  
is probably  sufficiently obvious, following the method 
in Fig. 1. The condit ion of a central mirror  plane has 
relevance to the projection approximation,  since this is 
a condit ion imposed by this approximation.  The dis- 
appearance of the centres of  inversion from the hkl 
distributions can therefore be used as an experimental 
test of  the breakdown of this approximation.  

The results for the horizontal  space-group elements 
are shown diagramatical ly  in Fig. 2. The same rules 
apply to the 000 distr ibution as to the other orders for 
these elements. 

Vertical symmetry elements 

Vertical here means in the direction of or parallel to 
the zone axis. Symmetries imposed by vertical elements 
are direct, i.e. independent  of  reciprocity. Hence, n- 
fold rotation axes parallel to a zone impose an n-fold 
rotation symmetry upon the diffraction pattern, relat- 
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Fig. 1. (a) Ewald construction, showing the relationship be- 
tween hkl and hkl reflexions in a centrosymmetric struc- 
ture. p, p', and pt, represent the centres of Ewald spheres of 
the incident, reciprocal, and reciprocal-inverted diagram. 
The relationship between the incident and reciprocal dia- 
grams is given by the reciprocity theorem and described by 
Moodie (1972). The inversion through the origin is an opera- 
tion under which the scattering diagram is invariant under 
centrosymmetry. The incident diagram is drawn in a full 
line, the reciprocal diagram and its inversion in a dashed 
line. I and O are used to indicate input and output beams. 
N the surface normal and n the base of the perpendiculars 
dropped from p to the horizontal plane. (b) The translational 
relationship between hkl and h ~:i imposed on the convergent- 
beam distributions by a centre of symmetry, when these 
reflexions are separately satisfied, is shown here. This fol- 
lows from the construction of (a). + and - indicate the 
sign of excitation error; the full line is the central Kossel 
line (see text). 

> 
( "--) 

(a) (b) 

Fig. 2. The symmetries imposed upon an hkl distribution 
under the influence of horizontal symmetry elements. The 
vertical bisecting line (K) represents the central Kossel line 
(see text). (a) A central horizontal rotation diad or twofold 
screw axis imposes a mirror line when it is perpendicular 
to the central Kossel line. (b) A central horizontal mirror 
plane (shown) or glide plane imposes a centre of inversion 
on the hkl distribution. 
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ing the hkO intensity distributions of the zone. The 000 
distribution will have n-fold rotational symmetry about 
its centre. 

+ 
I 
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Fig. 3. Derivation of the pattern symmetry for the [001] zone 
axis for the space-group P6a/mmc. This example illustrates 
the influence of several of the space-group elements dis- 
cussed in the text. Each hkl disc is divided by the intersect- 
ing central line and scattering vector as discussed in the text. 
Since the central points of each disc could not be displayed 
in a single convergent-beam pattern, the diagrams represent 
a hypothetical pattern, with all the relevant information 
which would be assembled from a group of convergent-beam 
patterns. (a) Derivation of symmetries from vertical mirror 
planes (m), horizontal twofold axes (arrow-head), triad, and 
centre of symmetry. (b) Resultant symmetry shown for two 
sets of reflexions belonging to different sub-set symmetries. 

Vertical mirror planes, and vertical glide planes with 
no z component of translation (with z parallel to the 
surface normal), will impose mirror lines on the zone- 
axis pattern as a whole, which will run through the 
zone centre on the 000 distribution and bisect certain 
hkO distributions in the Kossel-M611enstedt pattern. 

Vertical n-fold screw axes and vertical glide planes 
with a z component introduce no additional symmetries 
into the diffracted intensities (i.e. as distinct from those 
introduced into the Kossel-line geometry), the corre- 
sponding rotation and mirror symmetries appearing 
only as the projection approximation is approached. 

The above set of restricted conditions is arrived at 
by considering only those space-group operations 
which turn the crystal and the zone under considera- 
tion back into itself or itself translated parallel to the 
infinitely extending boundaries. An example of the 
derivation of a pattern symmetry from these rules for 
a particular space-group and zone is given in Fig. 3. 
The use made of two-dimensional point-group symbols 
in the accompanying table to describe pattern symme- 
tries is convenient, but should not be confused with 
their use to describe unit-cell symmetries. The example 
is not necessarily of practical interest, since we are 
much more likely to work back from specific symmetry 
elements and from a series of patterns, than from 
theoretically correct zone symmetries, which may not 
always be detectable. Techniques can then be employed 
to amplify specific effects. 

Use of the parallel-plate boundary conditions 

Influence of the third dimension of the crystal is in- 
troduced into the pattern by wave propagation. As has 
been shown (Goodman, 1974), this influence can arise 
through tilted boundaries as well as through a long c 
axis. Thus three-dimensional interactions may be in- 
troduced visibly into a pattern by a sufficient tilt, re- 
gardless of the unit-cell size. This phenomenon finds 
practical application in analysis. Zones which are lo- 
cated at a high tilt have the boundary symmetry super- 
imposed on them. A tilted plate has only two symme- 
tries with respect to the zone, namely a horizontal 
rotation diad, and a centre of symmetry. Provided 
these symmetries are also present in the crystal struc- 
ture they will be detected in the diffraction pattern. 
This is particularly valuable in allowing centrosymme- 
try to be tested for separately, and in the presence of 
other symmetry elements. Without this boundary con- 
dition, for example with a spherical crystal, analysis 
of the more highly symmetric groups would actually 
be more difficult. 

PART 2 

A. Tests with MgO 

MgO has a known simple centrosymmetric structure. 
At the [111] setting a (100)-faced plate has the known 
reduced symmetry of the tilted plate with respect to 
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the zone axis. It therefore provides a good test for the 
derivation of Fig. 1 for centre of symmetry. Already 
evidence has been provided (Goodman, 1974) which 
tests the behaviour derived above for a horizontal 
rotation diad. In Fig. 4 of that reference the 022 dis- 
tribution has a mirror symmetry about its centre line 
because this line is perpendicular to the rotation diad 
of the crystal, and Fig. 5(a) and (b) of that reference 
provide the proof. This test is not a specific test for a 
centre of symmetry, however. For this purpose it is 
better to choose a reflexion pair whose centre lines are 
not perpendicular to the diad, and which therefore 
lack mirror symmetry. This makes the task of looking 
for a translational relationship between hkl and hki  
distributions easier (and the result more convincing: 
even with a mirror line the distributions should still 
lack a centre of symmetry owing to the boundary 
conditions, so that a translation could still be disting- 
uished from a twofold rotational relationship, through 
not from a mirror relationship). In Fig. 4 of the present 
paper a pair of patterns are shown in which the 20~ 
and 202 reflexions, respectively, are satisfied. Owing 
to the lack of mirror symmetry, the subsidiary maxima 
in the 202-indexed beams identify a top and bottom 
to the distributions. A square bracket, coupling the 
first fringe on one side with the second fringe on the 
other as fringes of approximately of equal intensity, 
helps one to identify the change between Figs. 4(a) and 
(b) as a translation of intensity pattern. 

B. Space-group determination of a biotite sample 

Cleaved crystals from a mineral biotite sample were 
mounted in the Elminskop 1 universal tilt stage, which 
was copied from the Mills & Moodie (1968) design. 
This stage allows the specimen to be examined in the 
back focal plane of the objective, thus allowing con- 
vergent-beam diffraction to be carried out conveniently 
and with full use of the goniometer. There were many 
thin regions of crystal which readily gave clear con- 
vergent-beam patterns, but which suffered from crystal 
curvature, and from inclusions or bubbles on a fine 
scale. These crystal defects limited the experimental 
accuracy obtainable from the thin regions. However, 
much useful data could be obtained from these regions 
with little trouble. When specific points requiring 
higher accuracy arose, patterns were taken from much 
thicker regions, which were essentially flat, and as a 
consequence the pattern detail was not dependent on 
the precise focusing of the beam on the crystal. Bub- 
ble contrast still appeared but was easily distinguished 
from the pattern detail. Furthermore in diffracting 
from thicker regions certain effects of dynamic scatter- 
ing useful in the analysis were amplified. 

Three types of pattern were used. Both Kossel pat- 
terns (wide-angle convergent-beam patterns) and con- 
vergent-beam diffraction patterns were used to provide 
the main symmetry data, but also normal point pat- 
terns obtained by focusing the beam on the photo- 

graphic plate with condenser 2 were used to identify 
diffraction spacings, and systematic absences, to moni- 
tor crystal rotations through large angles, and particu- 
larly to measure the c spacing, a measurement which 
required a high crystal inclination to the beam. The 
experimental procedure was as follows: 

(i) A thin crystal was oriented with the goniometer 
into the [001] setting. This setting was identified by 
reason of being the principal zone, obtained with the 
crystal flake approximately horizontal, which gave the 
most closely spaced pseudo-hexagonal, or centred, 
diffraction pattern. This identification was confirmed 
by later measurements. The Kossel pattern at [001] 
showed a rectangular symmetry (see A in Fig. 5), 
showing that the crystal probably belonged to either 
the orthorhombic or monoclinic systems. By inserting 
an aperture a Kossel-M611enstedt pattern at the zone 
was obtained (see Fig. 6) which showed centring (h + k  
= 2n) and approximately cmm (No. 9) two-dimensional 
space-group symmetry. (Note" we can assess the two- 
dimensional group approximately in a very direct way 
because of the one-to-one correspondence of symmetry 
in the projection approximation.) 

(ii) The next step was to take Kossel-M611enstedt 
patterns above and below the main [001] zone. The 
nearest minor zone below [001] (reached by rotation 
about a*) has an inclined intersection (see B in Fig. 5). 
These inclined (to a*) lines were tentatively indexed as 
592, 39--2, although the analysis is not dependent upon 
correct indexing. The pair of Kossel-M611enstedt pat- 
terns shown in Fig. 7, taken either side of the [001] 
zone exciting respectively 592 and 392 in two separate 
four-beam excitations together with the 200 reflexion, 
established the fact that the inclination was mirrored 
across the a* axis and not rotated around the zone. 
This ruled out the possibility of a vertical twofold 
axis and hence ruled out the orthorhombic space 
groups as a possibility. 

(iii) The space group was then assumed to be mono- 
clinic or triclinic. However, the [001] projection space 
group is either cmm or clm. This would leave open the 
possibility of space groups 5, 8, 9, 12 and 15. Although 
the actual symmetry of the zone pattern (Fig. 6) is only 
lm and not 2mm because of the clear inequality of the 
200 and 200 distributions, we cannot immediately rule 
out the two-dimensional space group cmm for the pro- 
jection, since the one-to-one correspondence between 
pattern and unit-cell symmetry only holds within the ap- 
plicability of the projection approximation, or in other 
words when upper-layer interactions can be ignored. 
Some tests of the projection approximation were car- 
ried out in the vicinity of [001]. Reflexions were excited 
whose scattering vectors lay along no special crystal 
axes. Two examples are shown in Fig. 8, one with a 
small aperture close to 001, the other with a larger 
aperture near the neighbouring zone 203. In these pic- 
tures, the excited reflexion is encircled and the centre 
of the hkl distribution indicated with a dot. It can be 
seen that to a reasonable accuracy these distributions 
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(a) (b) 

Fig. 4. A pair of diffraction pat terns taken satisfying (a) 202 
and (b) 202 reflexions of MgO, near the [111] zone axis, 
using a plate crystal with (100) faces. The rotat ion axis of 
the crystal (giving the rota t ion f rom [001] to [111] zones) is 
at an angle of  60 ° to the central line of the distributions,  
which means that  these have no mirror-line symmetry.  
Hence subsidiary maxima are s tronger on one side than the 
other side of the central line, by a factor of  at least two. 
Subsidiary fringes of  equal intensity are coupled by a square 
bracket, demonst ra t ing  that  the asymmetr ic  distr ibution is 
translated and not  rotated in moving from the hkl  and the 
h k l  excitation. 

Fig. 5. A composi te  picture composed  f rom four  Kossei pat- 
terns. A is the [001] or principal pat tern;  B and C are neigh- 
bouring [Ok/] zones;  and D is the neighbour ing [h0l] zone. 
These zones are referred to in the text, and are used for the 
following convergent-beam diffraction pictures. 

To face p. 808 
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(a) (a) 

(h) 

Fig. 6. Kossel-M611enstedt pat terns taken from the [001] zone:  
(a) is the picture obtained at exact focus;  (b) is obtained by 
going two fine stops on the objective lens control  away f rom 
focus. In spite of  the dense bubble contrast  the main sym- 
metry features of the zone remain in evidence. Note  the 
asymmetry  between 200 and ~00 distributions,  resulting in a 
pat tern symmetry  of  l m. 

(b) 

Fig. 7. A pair  of  Kossel-M611enstedt pat terns taken (a) above 
and (b) below the [001] zone which is indicated by a cross 
(see region B of  Fig. 5). These show a reflexion of the in- 
clined intersection across the a* axis, rather  than a rotat ion 
a round  the [001] zone. 
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(a) 

(b) 

Fig. 8. Two Kossel-M611enstedt pat terns taken so as to satisfy 
a general reflexion, i.e. a reflexion with a scattering vector 
parallel to no principal crystal axis. (a) Close to the [001] 
zone, using a small aperture.  Encircled reflexion shows a 
centrosymmetr ic  S pattern.  (b) Close to the [~03] zone 
where a large aper ture  could be used. Encircled reflexion 
again shows an inversion symmetry  about  the indicated re- 
flexion centre. 

Fig. 9. Kossel-M611enstedt pat tern taken at the [~03] zone. 
This pat tern  clearly indicates the absence of any mirror  or 
glide plane parallel to a* (see text), i.e. parallel to the horizon- 
tal axis of  the picture. 

Fig. 10. Pat tern taken near the [~03] zone in which a reflexion 
is satisfied with a scattering vector parallel to a supposed 
horizontal  twofold axis (indicated by arrow). The apparent  
mirror  symmetry  seen in this distr ibution about  the indicated 
centre line tends to confirm the twofold axis. 
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Fig. 12. Focused point  diffraction pat tern with the incident 
beam at a high inclination to the c axis, so that  the projected 
c spacing and projected ,8 angle can be measured to identify 
the polytype as 2M. 

(b) 

Fig. 11. A pair  of  Kossel-M611enstedt pictures taken at an 
unidentified zone approximate ly  40 ° in rota t ion f rom [001]. 
In each picture an arrow indicates the encircled centre of  a 
satisfied reflexion; in one case the hkl, and in the other  the 
hkt reflexion, is satisfied. A lack of  inversion symmetry  
within each reflexion (contrast  with Fig. 8), and an approx-  
imate translation of  some of  the intensity features between 
pictures may be observed. 
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have a centre of inversion about their centres. This 
indicates that the projection approximation is holding 
up sufficiently well for us to identify the projection 
symmetry group as clm, thus leaving space groups 5, 
8 and 9 as possibilities. (Note: this test establishes 
either the validity of the projection approximation, or 
the presence of a central mirror/glide plane. In either 
case the interpretation of the zone pattern given is 
justified.) 

(iv) The next step was to rotate the crystal about 
b*, to the [203] zone (D in Fig. 5) in order to check 
for glide and mirror planes and twofold axes. For the 
space groups considered glide or mirror planes may 
exist parallel to a*, i.e., the mirror line and glide lines 
of the two-dimensional space group may or may not 
correspond to mirror or glide planes in three dimen- 
sions. For this purpose a Kossel-M611enstedt aperture 
was placed at the centre of the hexagonal Kossel pat- 
tern which defines the 203 zone. A crystal was chosen 
to be as thick as possible consistent with a reasonable 
exposure time, in order to obtain the greatest sensitivi- 
ty. The resulting pattern in Fig. 9 clearly demonstrates 
that no vertical mirror or glide plane exists in the unit 
cell. The 020, 020 distributions are perceptibly different, 
the 040, 040 distributions are completely different, one 
of them being practically of zero intensity, while the 
060, 060 distributions have a different shape, one being 
full and the other having a doughnut appearance. 
These asymmetries are clearly not attributable to ex- 
perimental error and rule out the centrosymmetric 
groups 12 and 15 (as was already suggested in the 
previous paragraph from the deduced two-dimensional 
space group), and the non-centrosymmetric groups 8 
and 9. At this stage we have deduced that if the system 
is monoclinic, the correct space group is number 5 (C2). 

(v) The final step in this analysis is to establish as 
conclusively as possible, whether the system is mono- 
clinic as distinct from triclinic. In the absence of 
mirror or glide planes the monoclinic system is charac- 
terized by horizontal twofold axes. For this test 
several patterns were taken in which reflexions were 
excited whose scattering vector lay parallel to the sup- 
posed twofold axes, i.e., whose centre line would be 
perpendicular to the axes. Thin crystal regions were 
used in order to obtain a clear view of several subsi- 
diary fringes, and for the same reason a large aperture 
was chosen. The results show that these reflexions have 
a central mirror line in their intensity distribution to 
quite a reasonable accuracy. The presence of a mirror 
line is made more striking when these distributions are 
compared with other distributions having scattering 
vectors in other directions (see Fig. 10). It is concluded 
that to a reasonably high accuracy the correct space 
group is C2, monoclinic, rather than P 1. If the need 
ever arose to distinguish between these groups with 
higher precision this study could be pursued with 
patterns from thicker crystals. 

(vi) The next experiment was an independent test 
for centrosymmetry. This test may appear academic at 

this stage since Fig. 9 establishes fairly conclusively 
that the structure is noncentrosymmetric. However, 
the opportunity was taken to implement the test for 
centrosymmetry described in part 1, since it is desirable 
to accumulate information on the degree to which the 
hkl to h£i translational relationship can be observed 
in various structures. For this purpose the crystal was 
rotated away from the [001] zone, about an arbitrary 
axis, by an angle approaching 40 ° , when it became 
apparent by the disappearance of a centre of inversion 
from the hkl distributions that the projection approxi- 
mation was no longer holding, owing to the inclined 
boundaries. A high-angle zone was located of unknown 
index. It can be seen from Fig. 11, in which the centres 
of the satisfied reflexions are indicated, that there is a 
complete lack of inversion symmetry (contrast with 
Fig. 8) in these reflexions, and that the distributions 
have something of the shape of a boomerang. It can 
also be seen that there is a tendency towards a trans- 
lational relationship between the satisfied hkl and hfci 
distributions, but that the relationship is not complete, 
most noticeable being the disappearance of the strong 
central intensity in one case. We conclude from this 
that the translational component arises from the cen- 
trosymmetry of the boundaries, and that the difference 
between the two distributions arises from the lack of 
centre in the crystal structure, apart from the experi- 
mental error involved from crystal curvature. 

(vii) Up till now no reference has been made to the 
X-ray-determined structure. It now becomes interest- 
ing to compare our results, and it is first necessary to 
measure the c spacing in order to identify the polytype 
positively. A point pattern was taken from a crystal 
tilted at a high inclination to the beam, after rotation 
around an axis approximately parallel to a* (see Fig. 
12). The crystal shape transform was cut at sufficiently 
low angle to display the projected c spacing, and after 
measuring the projected fl angle the c spacing was calcul- 
ated as ~_20 A, with/1___95 °. This corresponds to 2M 
biotite (Hendricks & Jefferson, 1939). However, the 
space group allocated from the X-ray data is number 
15, or C2/c, but the discrepancy is not too surprising 
since X-ray investigation of biotite, and the micas in 
general, is extremely difficult (see, for example, Deer, 
Howie & Zussman, 1965). It is also possible that 
samples of 2M biotite from different sources have 
slightly different structures, but the main point to be 
made is that the electron diffraction method offers a 
far clearer and more direct answer to the space-group 
question for this class of mineral. 

The author wishes to acknowledge the assistance 
given him by Mr A. F. Moodie and Dr John Steeds, 
who provided, through discussions and correspond- 
ence, the stimulus to develop the present methods. 
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NH4IO3 shows an abrupt contraction in the direction of spontaneous polarization at 82°C. This 
anomaly is accompanied by changes in the optical properties and phonon spectra, which were also 
studied at different pressures. On the basis of the lattice parameters and Raman spectra a probable 
mechanism is suggested for the phase transition. 

Introduction 

Iodates with large ions such as K, Rb and Cs, possess 
perovskite-like structures with distorted octahedral 
coordination for I. Those with smaller ions like H, 
Li and Na show other structures, in which the typical 
octahedml framework of the perovskite is lacking. The 
latter are characterized by pyramidal 105 ions. The 
structure of NH4IO3 (Keve, Abrahams & Bernstein, 
1971) is noteworthy because it shows the characteristics 
of both types, namely pyramidal IO5 ions occur in a 
distorted perovskite-like structure, thereby giving rise 
to interesting physical properties. Some of these were 
studied by Crane, Bergman & Glass (1969) and Salje 
(1974b) who observed a phase transition at 85°C. The 
aim of this study is to understand the nature of the 
transformation and to test if NH4IO3 is really ferro- 
elastic as suggested by Keve et al. (1971). 

Experimental 

The phase transformation of NH4IO3 was studied by 
X-ray, optical and Raman spectroscopic methods at 
different temperatures and pressures. The variation of 
the lattice constants with temperature was studied with 
a focusing Guinier-type camera. The orientation rela- 
tions between the different lattices were studied with a 
precession camera by heating single crystals on an 
iron-constantan thermoelement to about 100°C. 

The refractive index n B was measured at room 
temperature by the immersion method and the bi- 
refringence with a Zeiss compensator. The optical 

orientation and the optic axial angle were determined 
with an universal stage which could be heated to about 
120°C. The transition temperature could be deter- 
mined accurately by measuring the changes in the 
birefringence with a laser beam as source of light in a 
conoscopic arrangement and a photomultiplier to 
measure the changes in the intensity of the transmitted 
light. 

The dependence of the phonon spectra on hydro- 
static and uniaxial pressure and temperature was 
determined in a Raman .experiment described earlier 
(Salje, 1974a). Hydrostatic pressures up to 1.5 kbar 
were produced in a heatable steel vessel with corundum 
windows and with argon as the pressure medium. 
Higher pressures up to 20 kbar were applied in a 
piston cylinder apparatus with windows made of 
corundum, mounted in a small furnace. Uniaxial 
pressures were obtained by keeping the crystal in a 
heatable forceps. The pressure was varied by tightening 
a screw. 

Results 

NH4IOa shows two phase transitions, one at 82 °C and 
the other at about 115°C. At room temperature the 
following optical parameters have been observed: 

n~= 1.777; nB= 1.785; n~= 1.826; 2V=48.2 °. 

The orientation of the indicatrix is: n~, n~ and n~ 
parallel to [100], [010], and [001] respectively. The 
optic character is positive. The optic axial angle 2V 
increased gradually on heating to a value 60.2 ° just 


